科技日报【专题报道】亟待攻克的核心技术(31-35)

2018年7月6日19:28:18科技日报【专题报道】亟待攻克的核心技术(31-35)已关闭评论 343 views

在茫茫宇宙中,一个类金属合金宇宙探测器以超光速掠过,它由被强互作用力锁死的质子与中子构成,因表面绝对光滑而可以反射一切电磁波,并且无坚不摧……这是刘慈欣在科幻小说《三体》中提到的一种名叫“水滴”的宇宙飞行器。

事实上,人类对“绝对光滑”的追求也已经从科学幻想转变为实践,比如推动“集成电路变身革命”的超精密抛光技术。像《三体》中描述的一样,当前最为先进的化学机械抛光(chemical mechanical polishing,CMP)技术也已进入原子尺寸级。而当电子工业强国争相攀登或到达这一工艺巅峰之时,我们却还只能仰望。

现代电子工业,超精密抛光是灵魂

科技日报【专题报道】亟待攻克的核心技术(31-35)

物理抛光是上世纪80年代之前最为常用的抛光技术,但是电子工业的高速发展对材料器件的尺寸、平整度提出越来越严苛的要求。当一块毫米厚度的基片需要被制成几十万层的集成电路时,传统老旧的抛光工艺已经远远不能达到要求。

“以晶片制造为例,抛光是整个工艺的最后一环,目的是改善晶片加工前一道工艺所留下的微小缺陷以获得最佳的平行度。”中科院国家纳米科学中心研究院王奇博士向科技日报记者介绍。

今天的光电子信息产业水平,对作为光电子基片材料的蓝宝石、单晶硅等材料的平行度要求越来越精密,已经达到了纳米级。这就意味着,抛光工艺也已随之进入纳米级的超精密程度。

超精密抛光工艺在现代制造业中有多重要,其应用的领域能够直接说明问题:集成电路制造、医疗器械、汽车配件、数码配件、精密模具、航空航天。

王奇说:“超精密抛光技术在现代电子工业中所要完成的使命,不仅仅是平坦化不同的材料,而且要平坦化多层材料,使得几毫米见方的硅片通过这种‘全局平坦化’形成上万至百万晶体管组成的超大规模集成电路。例如人类发明的计算机从几十吨变身为现在的几百克,没有超精密抛光不行,它是技术灵魂。”

核心技术被雪藏,国内需求受制于人

浙江晶盛机电股份有限公司是我国电子制造业追逐“全局平坦化”的开路先锋之一,公司多年从事抛光工艺研发的技术主管孙明告诉记者:“如果把抛光工艺比作做煎饼,卡我们脖子的就是锅,别人的锅不粘锅底,而我们做不到。”

孙明所说的“锅”就是抛光机的核心器件——“磨盘”。超精密抛光对抛光机中磨盘的材料构成和技术要求近乎苛刻,这种由特殊材料合成的钢盘,不仅要满足自动化操作的纳米级精密度,更要具备精确的热膨胀系数。

当抛光机处在高速运转状态时,如果热膨胀作用导致磨盘的热变形,基片的平面度和平行度就无法保证。而这种不能被允许发生的热变形误差不是几毫米或几微米,而是几纳米。

目前,美国日本等国际顶级的抛光工艺已经可以满足60英寸基片原材料的精密抛光要求(属超大尺寸),他们据此掌控着超精密抛光工艺的核心技术,牢牢把握了全球市场的主动权。而事实上,把握住这项技术,也就在很大程度上掌控了电子制造业的发展。

孙明介绍,日本产抛光机的研磨盘均为定制,不进行批量生产,直接限制了他国仿制;王奇也告诉记者,美国的抛光设备销往中国,价格一般都在1000万元以上,而且销售订单已经排至2019年年底,此前不接受任何订单。

“面对如此严密的技术封锁,我们很急,春秋时期,鲁班为人类发明石磨助力了农耕文明,如今我们的电子工业进步却再次被一种磨盘卡住了脖子。但是再急,目前我们还得等,要么等进口,要么自主研发。”王奇说。

登顶技术巅峰,求人不如求己

其实在超精密抛光领域内,中国并非毫无建树。作为一套技术要求极高的合成工艺,超精密化学机械抛光工艺精必须由设备和材料(抛光液)组成,二者缺一不可。

2011年,王奇博士团队研发的“二氧化铈微球粒度标准物质及其制备技术”获得中国石油和化学工业联合会技术发明一等奖,相关纳米级粒度标准物质获得国家计量器具许可和国家一级标准物质证书。二氧化铈新材料的超精密抛光生产试验效果一举赶超了国外传统材料,填补了该领域空白。

但是王奇说:“这并不意味着我们已经攀登到了这一领域的顶峰,对于整体工艺来说,只有抛光液而没有超精密抛光机,我们最多还只是卖材料的。”

孙明认为,明确现代电子工业生产制造的具体要求,才能找准攻克超精密抛光工艺的方向:“抛光工艺需要满足目前电子工业制造的要求,可以概括为超精密、大尺寸。有了顶级的抛光材料仅仅是基础,以此为基础,我们还需要分两步走,首先解决磨盘问题,其次解决抛光面积扩大问题。”

孙明介绍,美国、日本抛光机磨盘的材料构成和制作工艺一直是个谜。换言之,购买和使用他们的产品,并不代表可以仿制甚至复制他们的产品,这是两回事。

“用什么材料和工艺才能合成这种热膨胀率低、耐磨度高、研磨面超精密的磨盘,是我们首先需要集中力量攻克的技术难题,这个问题一旦解决,60英寸抛光作业面也将不再是梦想。而这样的核心技术,永远不能指望从别人手中获得,除了依靠自己,我们别无选择。”孙明说。

(科技日报北京6月25日电)

32、环氧树脂韧性不足,国产碳纤维缺股劲儿

“碳纤维产业链核心环节很多,包括上游原丝生产、中游碳化环节、下游复合材料及其应用,经过十多年的研发和突破,目前我国碳纤维的‘卡脖子’问题主要在下游应用环节,即复合材料和制品方面。”中国化学纤维工业协会副会长贺燕丽说。

碳纤维是一种含碳量在95%以上的高强度新型纤维材料,之所以其质量能比金属铝轻,但强度却高于钢铁,还能耐高温、耐腐蚀、耐疲劳、抗蠕变等特性,其中一个关键的复合辅材就是环氧树脂。环氧树脂具有优良的物理机械和电绝缘性能,附着力强,能将碳纤维粘接在一起。但目前国内生产的高端碳纤维,所使用的环氧树脂全部都是进口的。

脆弱的环氧树脂改性之难

碳纤维按照力学性能可分为高强型、超高强型、高模量型和超高模量型。在日本东丽公司产品代号中,T指横截面面积为1平方厘米单位数量的该类碳纤维可承受的拉力吨数,即T数越高,碳纤维质量越好;模量指受外拉力或压力后恢复原形的拉伸模量。目前,我国已能生产T800等较高端的碳纤维了,但日本东丽掌握这一技术的时间是上世纪90年代。

中国复合材料集团有限公司董事长张定金说,相比于碳纤维,我国高端环氧树脂产业落后于国际的情况更为严重。特别是应用在飞机、航空航天等领域的高端碳纤维中。

分子结构中含有环氧基团的高分子化合物统称为环氧树脂,除碳纤维外,还广泛应用于机械、电子、家电和土建工程等领域。高端环氧树脂依赖进口一方面与我国化学工业基础薄弱有关,另一方面与环氧树脂本身特性有关。一个分子链上有两个以上的多官能团分子,可以交联反应而形成不溶、不熔具有三向网状结构的高聚物。而航空结构件的使用环境极为严苛,碳纤维复合材料必须能长期耐得住上百摄氏度的高温和零下几十摄氏度的低温;同时,在湿热条件下玻璃化转变温度、弹性模量及压缩强度不能显著下降,这就需要更高官能度、环氧值而且黏度合适的相关产品。

分子中能参与反应的官能团数被称作官能度,有业内人士表示,不是官能度越高越好。能度太高,复合材料会过于坚硬无韧性。因此,必须具体到在不同使用条件下,考虑强度、模量、韧性、高低温、疲劳等,从配方体系、分子结构去分析,这是一个非常复杂的系统工作,而且科技含量高、研究难度大。

环氧树脂的耐候性与玻璃化转变温度有直接关系,复合材料在航空领域应用时,普遍要求环氧树脂玻璃化转变温度不能低于180℃,而目前国产树脂领域绝大多数企业还不具备相关技术。

缺智能自动化设备

对连续碳纤维增强复合材料使用性能构成最大威胁的是复合材料的低速冲击分层损伤,这也是高性能复合材料能否在飞机结构中推广应用的核心。造成复合材料对冲击分层损伤敏感的主要原因之一是环氧树脂本身韧性不足。

为满足要求,增韧后的复合材料冲击后压缩强度(CAI值)至少需达到200—300兆帕水平。目前,国际上通行的树脂增韧方法包括原位粒子增韧或离位插层增韧。“各分子间组合关系非常复杂,要最终达到刚韧兼顾,没有长期的研究基础和多年实验自然很难研制成功。”树脂协会环氧分会秘书长孔振武说。

“环氧树脂的改性还与智能自动化设备息息相关。”东华大学材料科学与工程学院教授余木火表示,我国碳纤维生产时间短,缺乏低成本的成套自动化生产设备,导致生产效率低、产品稳定性不足等问题。

“还需要对这样的智能化设备加大研发和生产力度。”贺燕丽说。

应用牵引不足进步慢

环氧树脂情况特殊,“不同用途,其结构和性能等都不同。”孔振武说,我国碳纤维材料生产与应用相互脱节,应用对之牵引不足,没有反馈修正,环氧树脂等技术进步自然也就慢了。

目前,高端碳纤维用得最多的是在飞机上,如在波音B787机型上,使用东丽公司生产的碳纤维复合材料已占总材料用量的50%。2016年,东丽公司的碳纤维产量约为4万吨;而我国碳纤维企业30多家,总产能2万吨左右,实际产量约7000吨。

东丽碳纤维大量使用在波音上绝非是一朝一夕之功。从上世纪80年代开始,东丽公司就和波音进行全方位合作,东丽人甚至是住到了波音公司里,根据波音要求来设计、生产碳纤维。直到2011年—2012年,使用碳纤维的飞机才开始试飞,磨合时间长达近30年,并根据波音的使用要求和反馈,不断纠错、修正产品。

此外,在一个行业中一旦形成领先效应,超越就很难。目前波音飞机、美国F-22和F-35战斗机上使用的碳纤维环氧树脂都来自美国亨斯曼公司。余木火说,亨斯曼的产品早已通过了材料和工艺认证,如果要使用其他企业生产的环氧树脂,还需要一个漫长、繁复的论证过程,碳纤维生产企业自然愿意使用亨斯曼的。这也不利于国内高端环氧树脂产品迎头赶上。(科技日报北京6月26日电)

33、去不掉的火箭发动机“锈疾”

“不锈钢能不能不生锈?”这个有点黑色幽默的问题,几乎让中国航天科技集团六院发动机专家、长征五号运载火箭副总设计师陈建华落下心病。

在我国120吨级液氧煤油补燃循环发动机YF-100的研制过程中,陈建华注意到好几种高强度不锈钢都容易生锈。从2011年开始,他跟老朋友,钢铁研究总院特殊钢研究所副所长苏杰无数次沟通,双方压力都很大。

如今,长征六号、七号、五号火箭相继首飞了,陈建华仍没有得到完全让人信服的答案。

强度和防锈性能是对矛盾体

用于火箭发动机的钢材需具备多种特性,其中高强度是必须满足的重要指标。苏杰向科技日报记者介绍,过去我国火箭发动机上采用的奥氏体不锈钢,屈服强度约为300兆帕,而新一代运载火箭所用材料,强度是其2到4倍。

然而,不锈钢的强度和防锈性能,却是鱼和熊掌般难以兼得的矛盾体。

“需要明确一个概念,不锈钢是会生锈的。”苏杰说,“简单来讲,钢材的耐蚀性主要依靠合金元素‘铬’的含量,但如果该元素加得太高,强度就上不去。因此高强度的材料,防锈能力一定会较差。”

北京科技大学材料科学与工程学院教授李静媛补充说,提高不锈钢强度常用的方法是析出强化。在热处理工艺中,钢材料内部会析出一些微粒,弥散分布于基体中导致硬化。“但是,微粒析出的位置会出现缺陷,缺陷处合金元素减少、组织结构出现差异,破坏了金属材料的均匀性,就容易发生腐蚀,也就是通常所说的‘生锈’。”她表示。

陈建华表示,火箭发动机材料如果只是有点浮锈问题不大,但如果严重生锈,可能带来很大影响。

假设阀门的阀芯生锈,会使阀门在开合过程中遇到阻力,导致反应速度出问题。如果锈得厉害,还可能发生泄漏。要是管道生锈,锈块随着燃料流动,可能引起堵塞。

世界难题:国外发动机材料也生锈

生锈问题带来的苦恼,陈建华深有体会。“为了防锈,我们规定发动机见水不能超过几小时。可发动机沾水在所难免。例如做水力试验,每次做完得赶紧把发动机拉回厂里,放进炉子烘干。”他说,“长征五号火箭只能在海南文昌发射,暴露在潮湿环境下多久会生锈?我只关心这个。”

他有一块国外发动机材料,放在仓库多年依旧光亮。

苏杰坦陈,我国在新材料研发方面与发达国家还有差距,目前主要处于仿制阶段。现在我国航天材料大多用的是国外上世纪六七十年代用的材料,只是如今工艺技术更先进,生产的同样材料性能更好。

李静媛对此颇为忧虑:如果遇到高端产品,国外不公开材料成分、工艺,我们难免会被“卡住脖子”。

同时她认为,我国拥有一流的设备,但管理水平与国外存在差距。例如发达国家在生产过程中会严格控制杂质含量,如果纯度不达标,便重新回炉,但国内厂家往往缺乏这种严谨的态度。

不过苏杰说,陈建华那块国外材料后来被拿到海南,与国产材料做对比,结果两者同时生锈。“完全依靠材料自身实现高强度和防锈性能兼备,这是世界性难题。”苏杰表示。

鱼和熊掌兼得需借助外援

李静媛认为,要实现鱼和熊掌兼得,可以进行更为科学的成分设计,例如加入抗蚀性元素、强化元素等,并对各元素的加入量进行科学配比。

但苏杰认为,这是理论性的方向,正确但不适用。“对于航天动力这样高强度级别的材料,我们已经尽可能优化,兼顾了耐蚀性。”他说,“耐蚀性更好的材料有很多,但我们的核心不在于保证不生锈,而是强度、韧性等多方面性能的匹配。”

其实航天材料防锈并非不能实现,只是需要借助“外援”。苏杰说,通过材料和工艺配合,一方面利用材料自身防锈能力,一方面采用表面涂层处理或往材料内腔注入干燥空气、氮气等辅助手段,已经解决了生锈问题。

陈建华表示,六院也针对生锈问题专门开展了试片研究,并对产品适应性进行了充分考核验证。通过对贮存5年的发动机进行多次考核,发现其工作状况良好。

但他仍没有完全放心。陈建华说,对于我国正在发展的可重复使用火箭发动机,使用时间更长,其内部要反复经受煤油浸泡,又不能拆开处理,对防锈能力的考验会更严峻。又如我国新一代运载火箭,现在是无人发射,将来要是载人,安全可靠性要求更高。生锈问题到底有没有影响?这些问题必须搞清楚。

34、数据库管理系统:中国还在寻找“正确打开方式”

有一天你去银行取钱,惊喜地发现:由于系统故障,你的账户显示着马云的数据……

这种事不可能发生,因为数据库管理系统非常可靠。网上买火车票,或者将照片上传云端,你都离不开它。

而商用数据库管理系统的丰厚利润,一直被甲骨文为首的几家美国公司瓜分,中国产品望洋兴叹。

速度和可靠,兼顾是难题

查询银行账户时,我们不知道数字来自哪台计算机,哪块硬盘。有数据库管理系统(DBMS)替我们干活。

DBMS就像图书管理员:找到书架,存书,取书……说起来容易,但当图书馆特别大,而且书会拆开来放入相隔遥远的架子时,管理起来就很麻烦了。

在数据库开发与实施方面有丰富经验的IBM分析领域架构师罗曦光举了一个例子——用户修改数据时,相关存储区域会被锁住,其他用户只能排队等,如果DBMS存储位置不合理,就会耽误许多时间。数据操作的理想状况,如同几十只手弹奏一架钢琴,各弹各的,互不影响。

“数据库管理系统,尤其是关系型数据库管理系统(RDBMS)的方法论,教科书上写得很明白;其功能和常见的图书管理系统没什么差别。但当数据量非常大,到了TB和PB级别,DBMS性能不下降就是一大挑战。”罗曦光说。

比如一个普通的大型网站,每秒钟要处理十万个查询请求,数据库得同时执行几十个查询任务,而且响应时间极短。

“网络用户发送请求,期望一眨眼就得到结果。如果DBMS做得不好,响应时间长到10秒或20秒,用户会丧失耐心,数据库还可能经常挂掉。”罗曦光说,要永远不出故障,达到高可用性,需要很多专门技术。

目前全世界最流行的两种DBMS是Oracle和MySQL,都是甲骨文公司旗下的产品。竞争者还有IBM公司的DB2、Informix,微软公司的SQLserver以及开源的MariaDB等等。甲骨文、IBM、微软和Teradata几家美国公司,占了大部分市场份额。

国产替代难,输在稳定性

DBMS国货也有市场份额,但只是个零头。银行、电信、电力等要求极端稳妥的企业,不会考虑国货。20年前就有人呼吁国货替代,但一线技术人员并不情愿。

“先发优势、完善的售后技术支持和高额的迁移成本,是企业难以迁移到新系统的原因。”罗曦光说,国内一家电商平台为了从Oracle迁徙到别的系统,最多曾用上百人的团队花了十几个月,成本不菲。

罗曦光认为,如今的开源DBMS做得很好而且免费,但银行和传统龙头企业出于谨慎,对于将核心系统迁移到开源系统仍会持谨慎态度。

稳定压倒一切。DBMS行业观察家晓军在《国产数据库发展现状分析》一文中指出,国内DBMS企业大多源自1990年代的高校,期望实现国产替代。但多年来,“产品的稳定性一直上不去,也不敢做有挑战性的性能测试。所以,稳定性、性能都无法让市场信服。结果就是:稍微重要一点的系统根本没人敢用。”

另外,晓军说,当年国货往往模仿Oracle,追求大而全,而技术创新不足、没有特点。相比之下,1990年代的美国小厂商极富创新力,开辟了一些全新的技术方向,在与甲骨文等巨头的竞争中成功活了下来。

“这个年代,开源DBMS的源代码可以随便下载,国内应该不会有新的入场者再去做传统的DBMS了。”罗曦光说。

浩瀚代码的背后,是浩瀚人才

“Oracle的数据库软件……代码量堪称浩瀚。”晓军说,“Oracle最有特色的地方就是功能非常繁多,语句极端丰富,即便大部分都不常用。”

晓军说,小公司在这一点上试图比肩甲骨文,犹如“乞丐与龙王爷比富”。

晓军举例说:“Informix的主要模块的源代码就有2000多万行,Informix当年在美国的核心研发队伍就有超过200人,加上测试和周边团队,不下500人。”

而国内付费使用IBM公司的Informix源代码的几家企业,相关队伍都不超过40人,晓军说,要快速追赶世界先进水平,阅读代码的团队规模应该超过写代码的团队。因此国内“面对十年前的巨量代码一筹莫展,要弄通又得花很多年。”

而罗曦光认为,尽管国内公司没有可以比肩甲骨文的,但“在参与开源软件的意义上,中国不是没有入场的资格。这是一个技术充分交流与共享的时代。”

罗曦光说,目前开源的RDBMS(如MariaDB)就有国内软件开发人员大力支持,与大数据平台紧密关联的NoSQL数据库(如HBase)的开发社区里也活跃着中国开发人员的身影。以阿里云为代表的国内云服务的底层,也包含借鉴开源系统打造的数据库管理系统。

“今时今日,一个全新的公司来做项目,可能不会选择国外厂商付费的DBMS。比如互联网的初创企业,大概率会选择国内厂商的基于云服务的包含DBMS的整体方案。”罗曦光说。

35、扫描电镜“弱视”,工业制造难以明察秋毫

对材料微观结构的观测离不开“微观相机”——扫描电子显微镜,一种高端的电子光学仪器,它被广泛地应用于材料、生物、医学、冶金、化学和半导体等各个研究领域和工业部门。

“比如,在材料科学领域,它是非常基础的科研仪器,毫不夸张地说,材料领域70%—80%的文章都要用到扫描电镜提供的信息。”中国科学院上海硅酸盐所研究员、中国电子显微镜学会扫描电镜专业委员会副主任曾毅告诉科技日报记者。但是,目前我国科研与工业部门所用的扫描电镜严重依赖进口,每年我国花费超过1亿美元采购的几百台扫描电镜中,主要产自美、日、德和捷克等国。国产扫描电镜只占约5%—10%。

高质量电子光学系统生产困难

曾毅说,扫描电镜的图像分辨率与电子束的直径密切相关,电子束汇聚越细,图像分辨率就越高。

扫描电子显微镜主要是利用二次电子信号成像来观察样品的表面形态,即用汇聚得很细小的电子束在样品表面扫描,通过电子束与样品的相互作用产生各种信号(如二次电子信号)来获得材料表面细节信息。

扫描电镜由电子光学系统、信号收集及显示系统、真空系统和电源系统组成。其中,电子光学系统又由电子枪、电磁透镜、扫描线圈和样品室等部件组成。工作时,电子枪发射出的电子束被电磁透镜汇聚成极细的电子束,在样品表面进行扫描,激发样品表面产生二次电子。二次电子由探测器收集,并被闪烁体转变成光信号。

二次电子产生的多少与样品表面的形貌有关。样品不同区域所激发出的二次电子的数量不同的,那么经光电倍增管和放大器转变成的电压信号就有相应的差别,反映在荧光屏上相应部位也有或亮或暗的衬度差,最终得到一幅样品表面放大的黑白图像。

为了获得较高的图像分辨率,汇聚的电子束的束斑直径应尽可能细。而电子束的汇聚必须通过电子光学系统来完成。“现在的电子光学系统需要将电子束聚焦到1纳米左右,也就是电子束在样品表面形成一个直径小到1纳米的斑点,相当于一根头发丝直径的六万分之一,这就要求电子光学系统各个部分设计完美,才能形成如此细小的电子束斑,这是一个较难解决的问题。”曾毅说。

透镜内探测器设计难度较大

除了需要极细的电子束,扫描电镜图像的获得还需要高效的二次电子探测器。“现在主流的扫描电镜大多采用半磁浸没式或者全浸没式透镜技术,也就是将探测器装到电磁透镜上方,利用磁场力的作用来收集二次电子。”曾毅说。

分辨率较低的钨丝灯扫描电镜的探测器一般位于电磁透镜和样品之间。在这种情况下,探测器和样品的距离就比较近,样品和透镜的距离(工作距离)就比较远。事实上,扫描电镜的图像分辨率与工作距离密切相关,距离长会导致图像分辨率降低,而距离近则能提高图像分辨率。

为了提高扫描电镜的图像分辨率,就要尽可能地缩短样品和透镜之间的距离,采用的方法就是把探测器往电磁透镜上方移。这样,工作距离就可以缩得很短。2000年以后,工作距离更短、图像分辨率更高的场发射扫描电镜应运而生,并成为主流产品。而目前主流场发射扫描电镜都采用半浸没式或全浸没式电磁透镜,也就是将探测器装在电磁透镜上方或者里面。

探测器在样品和电磁透镜之间的钨丝灯扫描电镜设计简单,利用电场的作用来探测二次电子,只需要在探测器的前端加一个正电压,探测器就可以将二次电子“吸过去”,收集起来。而场发射扫描电镜将探测器装到电磁透镜里面以后,虽然样品和透镜的距离拉近,但是探测器和样品的距离却变得更远了,收集二次电子的效率就会大大降低。

“此时仅仅靠在探测器前端加正电压吸引二次电子的方法就行不通了,需要借助磁场力作用将二次电子吸到电磁透镜内部。场发射扫描电镜如何利用磁场力的作用将二次电子高效地吸到电磁透镜内,在提高采集效率这一点上,我们需要有所突破。”曾毅说。

低电压分辨率需要突破

传统扫描电镜在观察非导电样品时,样品表面必须镀导电膜层才能对其进行观察。这种情况下,导电膜会对样品表面真实形貌造成一定程度的掩盖。目前主流的扫描电镜的重要突破之一是,通过降低入射电子的加速电压,就可以不镀导电膜层直接观察非导电样品。

虽然降低加速电压带来了直接观察非导电样品的好处,但是也给电镜生产厂商带来了巨大的挑战。加速电压降低到3kV以下后,带来了一系列问题,主要是会导致电子枪的亮度降低,同时它的色差也会增大。这样,原来细聚焦的电子束“探针”的直径就会显著增加,导致图像分辨率严重降低。这也是自从上世纪六十年代就有学者提出采用降低扫描电镜加速电压以对不导电样品直接观察的理论,但直到2000年后才真正实现商业化的低电压扫描电镜的原因所在。目前主流场发射扫描电镜的低电压分辨率(0.7—1nm@1kV)已经很好地满足不导电样品表征需求,不久前国产场发射扫描电镜也推出了能在低电压下获得图像的最新型扫描电镜,其1kV下的分辨率为3nm。

为了在低电压观察样品的同时不降低图像分辨率,通常的解决方案是通过施加减速电压、镜筒内减速或者单色器技术等。“但是不管哪种方案都涉及到整个电子光学系统的重新设计和加工。施加减速电压以后,就相当于将样品表面作为一级透镜,多了这样一个‘透镜’,电子光学系统的设计就会更复杂,同时对系统的均匀性、稳定性要求就更高,些许的缺陷都会严重影响扫描电镜的低电压分辨率。”曾毅说。

“尽管目前国产扫描电镜占据的市场份额较小,技术指标也和主流电镜有一定差距。但是同主流产品相比并不存在不可逾越的技术鸿沟,如果能加大对自主科研装备的研发投入,同时配以政策引导,相信不久的将来,一定可以看到越来越多的国产扫描电镜出现在我国的科技事业舞台上。”曾毅说。

weinxin
扫码,关注科塔学术公众号
致力于成为国内领先的科研与学术资源导航平台,让科研工作更简单、更有效率。内容专业,信息准确,更新及时。
avatar