位于美国弗吉尼亚州纽波特纽斯(Newport News)的托马斯杰斐逊国家加速器装置TJNAF(Thomas Jefferson National Accelerator Facility),俗称杰斐逊实验室(Jefferson Lab)或JLab,是美国能源部科学局下属的国家实验室。
JLab的主要研究装置是连续电子束加速装置CEBAF(Continue Electron Beam Accelerator Facility ),CEBAF由一个极化电子源和一对长1400米的超导高频直线加速器组成。两个超导直线加速器由含有两个导向磁铁的弧形段将彼此连接起来。当电子束连续运行5个轨道后,其能量最高达到6 GeV。与西欧中心或费米国家实验室的经典环形的加速器形状相比,这一设计看起来类似田径场上的跑道。实际上,CEBAF是一个折叠起来的直线加速器。
Jlab加速器示意图
|
|
|
注入器
北直线加速器与南直线加速器
JLab加速器隧道的西弧段与东弧段
CEBAF的一个显著特点是电子束的连续性质,允许电子束连续而不是典型的环形加速器的脉冲束流(有某种脉冲结构,但脉冲很短),电子束射向3个靶,束团长度小于2皮秒。另一个显著的特点是采用超导高频技术,用液氦将铌大约冷却到4K(-452.5°F)消除电阻,使能量最有效地传送到电子。为了实现这一目标,JLab拥有世界上最大的液态氦储冷罐,是实现超导高频技术最早的大规模器械之一。加速器建在地表面8米,或约25英尺的地下,加速器隧道的墙壁厚2英尺。
氦储气罐与中央氦液化器的储冷罐
JLab机器控制中心
CEBAF加速器1995年出束运行并开始实验,CEBAF和实验设备(包括探测系统和高密极化靶)具有特殊的优越性能。高亮度带来实验的高统计精度,实验周期短,实验内容非常丰富,实验课题很广泛。3个实验大厅每年可完成约1O-15个实验;高性能束流加上高精度谱仪,致使实验结果一般都有明确的结论。
CEBAF为超导回旋电子加速器,最大能量为6GeV,在1-6 GeV 之间可以有几个分离能量:1.2、2.4、3.6、4.8和6 GeV,且为连续束流;电子极化率高达8O;聚焦性能好(束斑小于50 m);束流可同时供3个实验厅实验。束流的极化度、强度、斑点大小及位置都有两套监测装置。由于是连续束流,在保证高亮度方面,CEBAF的束流因子比其他加速器高3个数量级以上。每一次循环,束流都通过两个直线加速器,但通过一组不同的弯转磁铁。
束流最终引到3个实验大厅A、B和C。每个大厅都有一个独特的谱仪,记录电子束和固定靶之间的对撞结果,使科学家们研究原子核的结构,特别是构成原子核的质子和中子的夸克的相互作用。
当靶中的原子核被束流的电子击中后,“相互作用”或“事例”发生,散射粒子进入实验大厅。每个大厅都包含数组粒子探测器,跟踪事件所产生的粒子的物理特性。该探测器产生由模拟到数字转换器,时间到数字转换器和脉冲计数器转换成数字值的电脉冲。这些数字数据必须收集和储存,以便物理学家们可以在以后分析数据和重建发生的物理。执行此任务的电子学及计算机系统称为数据采集系统。
A实验厅有两个高分辨率谱仪和小角度磁体以及高密度极化靶。谱仪具有高动量分辨率;谱仪可在可转动的轨道上转动,因而可以在不同的角度上测量散射电子,由于束流斑点小于50 mm,相互作用的顶点位置可以定得很准。高密度靶加连续束流,保证了实验数据的高统计精度;高精度谱仪保证了小的系统误差,实验结果确定、可信。
A厅光谱仪与电子能谱仪
B实验厅的实验装置为大接收度的谱仪电磁量能器,以探测光子为主,测量由电子、光子引起反应的产物,亮度低些但信息量大,可以在几乎4兀立体角范围内把一次反应的产物都记录下来。它的物理课题主要为介子核的研究、超核的研究和手征对称性破缺的研究等。
B厅大接收度谱仪与CLAS超导磁铁
C实验厅有两个谱仪以及一些特殊设备和高密靶,束流亮度高,有介子核等研究课题,着重于对奇异海夸克结构函数的研究。
C厅高动量谱仪
CEBAF在线数据获取系统
由于CEBAF有三个互补性的实验同时进行,所以3个数据获取系统应尽可能相似,以便物理学家从一个实验移动到另一个实验中发现有一个熟悉的环境。为此,一个由聘请专家组成的物理学家小组形成一个数据采集开发小组为所有三个大厅开发一个共同的系统,即CEBAF在线数据获取系统。
CEBAF在线数据获取系统是一套软件工具和推荐的硬件,以促进核物理实验的数据获取系统。在核物理与粒子物理实验中,粒子轨迹由数据获取系统数字化,但探测器能够产生大量可能的测量结果,或“数据通道”。
ADC、TDC及其他数字电子产品通常是大型的电路板,前沿有连接器,提供数字信号的输入和输出,并在背面有一个连接器,插到底板。一组电路板插入到机箱,提供实质支持,电路板和底板的功率和冷却。这一安排使电子学能够将压缩到一个单一机箱数以百计的通道数字化。
在CEBAF在线数据获取系统中,每个机箱有一个电路板,该电路板是其他机箱的智能控制器。该电路板被称为读出控制器,第一次接收数据后,配置每块数字化板,从数字化仪读取数据,并为以后分析将数据格式化。
12 GeV 升级改造
2004年4月19日,美国能源部宣布批准JLab开始规划一项耗资2.25亿美元的项目(后来增为3.1亿美元)。该项目包括将其CEBAF的能量从6 GeV提高到12 GeV,同时改进计算设备和建造第4个开展GlueX粒子物理实验的实验大厅D。
12 GeV 升级改造示意图
12 GeV升级改造是核物理界深入了解未知领域的一个特有机会。研究人员第一次能够探索强相互作用系统的夸克和胶子结构,确定被认为是描述强相互作用理论的量子色动力学是否全面和完整地描述强子(3夸克)系统。12 GeV升级改造项目将对强子物质 – 构成世界上一切东西的物质做出具有深远意义的贡献。12 GeV的研究项目将在以下5个主要领域取得突破:
¨通过寻找奇异介子(在奇异介子中,胶子是其结构不可回避的部分),研究人员将探索量子色动力学的迷人和复杂真空结构和禁闭的性质。
¨通过对为研究隐藏在核子中味的作用而提出的宇称不守恒的精度极高的研究,研究人员能够探索即使利用拟议中的国际直线对撞机都不能探索的超越标准模型的能量范围的物理。
¨该机器的亮度,负载因数和运动范围的结合将远远超过至此可提供的任何东西,使核物理学界能够看到以前不可能看到的自旋和价部分子分布对味的依赖 - 质子的核心,量子数在此确定。
¨研究人员将能够彻底了解原子核的结构,研究价夸克结构如何在一个密集的核介质中进行改变。这些研究将奉献给世界对原子核结构更深层和更基本的了解,对所有核物理和核天体物理具有深远的意义。
¨一般的部分子分布将使研究人员首次从事核断层扫描,发现核子的真实三维结构。
由于CEBAF现有的功能,12 GeV的升级非常符合成本效益。超导高频直线加速器包括有超导铌腔,在加速梯度和Q设计参数平均50%以上运行。这项技术的成功开辟了一个相对简单、CEBAF最高能量升级不太昂贵的可能性。由于CEBAF隧道的空间充足,这个目标也成为可能。隧道的设计使磁弧可容纳多达24 GeV的电子束。12GeV的升级改造计划2005年完成概念设计,2007年开始建造,预计2015年全面投入运行。CEBAF的改进将使其以世界各地其他实验室不能达到的精度对夸克展开观测。
(1)加速器的升级改造
加速器的升级将按原有CEBAF的加速器框架加以建造。已安装超导腔的潜在电压使CEBAF的加速性能接近6 GeV,超导高频部件的开发成功,研制出比原设计作用大2倍以上的两个低温组件。低温组件开发项目的最后设计超过原来设计规范的5倍。12 GeV升级使用的低温组件采用性能更高的7个单元腔,同时保持原有低温组件的设计总长度。利用加速器隧道中已有的空间,按适当的费用安装10个最终设计的更高性能的低温组件。
D厅需要12 GeV的束流,则到A、B和C厅的需要最高达11 GeV的束流。为达到这个目标,加速器将升级到2.2 GeV/圈(1.1电子伏特/直线加速器),束流传输系统升级和扩大,包括:
¨ 10个新的更高电压的低温组件,即超导高频加速部件(每个直线加速器有5个)。
¨ 10个新的高频站,给10个新的低温组件提供动力。
¨增加约一倍的制冷能力。
¨修改回流弧中的磁铁及电源,以将高能量束流限定在现有束流轨道中。
¨修改引出系统,以支持更高能量的束流。
¨第10个弧的一条光束线额外通过北直线加速器。这一额外的加速通过将使束流升到适应在新厅(D厅)实验方案所需要的12 GeV。
¨ D厅与直线加速器之间连接一条新光束线。
束流传输系统将携带12 GeV的束流到D厅以及能量高达11GeV的束流到A、B和C厅。完成这些任务的编排复杂,需要增加二极磁铁和聚焦磁铁的场强。磁铁系统的改动,需要将束流分离到它们的适当轨道,通过再循环弧和将它们重新组合通过加速节加以完成。
12 GeV的升级改造进展顺利,上图为两个12 GeV的加速腔安装
在加速器研究和开发的水平试验台上测试
(2)A、B、C实验大厅的改造
为了配合12GeV升级改造,A、B和C三个实验厅将分别建立新的适合高计数率的满足各厅物理计划的磁谱仪。
A厅 - 升级光束线以达到最大能量5圈的束流能力。继续使用现有的谱仪对和特殊装置实验。
A厅的双谱仪(HRS)
CEBAF在6 GeV运行时期,C厅是开展大型装置实验的地方。升级到12 GeV后,A厅将承担起这一角色。新建一台大角和大动量接收度的、中等动量分辨率和好的角分辨率的超导偶极四极磁谱仪,称为MAD(medium acceptance device)。
其他大型装置实验是高精度、宇称破缺、测量正负电子散射称为Moller的实验。此外,还计划利用A厅对镜像核氚和氦3结构进行独特的研究。
B厅 - 改善现有的CLAS探测器,用新的磁铁和探测器捕捉提高亮度后更具前瞻性为重点的反应产物。
CLAS谱仪将升级到称为CLAS 12的谱仪系统,重点用于开展前角散射实验。CLAS12中新的前向探测器将提供更好的电子介子分离,而新的中央探测器区,基于一个紧凑的5 T螺线管磁铁与硅条探测器和漂移室,将提供粒子跟踪。升级后的B厅设施将重点通过测量深入遍举和半单举过程测绘核子的三维结构。
Clas12设计效果图
CLAS 12 为大接受度谱仪系统,一个高阈值契仑科夫计数器(HTCC)位于环形超导磁体的前面,接着是几个漂移室、一个低阈值契仑科夫计数器(LTCC)和一个电磁量能器(EC)的三个区域。在新的CLAS12谱仪的中心是一个5 T带有桶部条形径迹器(BST)和前向硅径迹器(BST)的螺线管。
C厅 - 安装一个新的称为超高动量谱仪SHMS(super high momentum spectrometer)的谱仪系统,能够测量散射高达全束流动量的粒子,它将与现有的高动量谱仪HMS一起使用。
作为升级的一部分,C厅会有第二台高分辨率谱仪。这一台新设备将取代大接受度短轨谱仪SOS(Short Orbit Spectrometer),为C厅提供一台动量能够达到大于11 GeV/c的谱仪,被称为超高动量谱仪SHMS(),该谱仪与当前的HMS谱仪一起,将C厅变成一个经典的双谱仪设备,类似于6 GeV期间A厅的装置。计划中的实验项目将侧重于深非弹性形状因子,短距离的相关性,以及核子和介子形状因子。该工作的一个重要方面将是在半单举性测量中将纵向和横向虚光子截面分开。
C厅的高动量谱仪HMS和短轨道谱仪SOS
高动量谱仪HMS的漂移室
高动量谱仪HMS(右)以及超高动量谱仪SHMS(左上)
(3)新建D厅中的GlueX磁铁和探测器系统
约束是量子色动力学(QCD)的独特属性,但对它仍然没有很好地了解。为了提高对约束的了解,新的D实验大厅将利用电子束产生相干韧致辐射束流,安装一台大接受度螺线管探测器GlueX。这是一项用来将粒子物理实验推向极限的实验,并期待回答有关微小夸克的一系列重大问题,这些夸克构成宇宙中的大量物质。
GlueX实验的独到之处在于它需要使用相对低能量的电子束(与其他一些例如费米国家实验室装置的能量达TeV相比,GlueX只需要12 GeV)。但这正是质子与中子展示其内部结构所需的能量。电子束穿过一个菱形的透镜,使其发射出一个光子束,这种光子束能够激发氢原子核中的夸克形成例外重介子-这是一种以前从未观察到的粒子,它能够阐释许多有关夸克的未解之谜,例如,为什么它们总是成对或以3个或5个为一组地出现,以及它们是如何在质子周围禁闭的空间内飞速运转的。
GlueX将侧重于寻找为存在明确要求胶子自由度的混合介子,当电子束通过经过相干韧致辐产生高能极化光子束流的辐射体时,将非常适合找到这些罕见的粒子。Glue X由超导螺线管围绕靶和包括桶部量能器(BCAL)、丝跟踪室(中央漂移室和前向漂移室)、飞行时间闪烁体和铅玻璃量能器(前向量能器)组成探测器。
D厅探测器GlueX设计图
BCAL = 桶部量能器;CDC = 中央漂移室;
FDC = 前向漂移室;TOF = 飞行时间计数器
(4)土建施工
土建施工包括改造原有建筑和公用系统,以支持12GeV加速器的运行,向中央氦液化器增加一些设施,包括变电站和冷却塔,以及建造一个新的带有公共设施的D实验大厅综合体。支持12 GeV加速器运行的大部分通用设施是对低导水(LCW)和电力的设施进行升级改造。现有的中央氦液化器建筑将扩大,以安装#2中央氦液化器压缩机。服务#2中央氦液化器的机械和电气系统类似于服务#1中央氦液化器的现有系统。
D厅综合体建筑示意图
D厅综合体包括一个实验大厅,容纳GlueX实验设备;隧道延伸部分,以容纳新的束流输运线和标记磁铁;会计室;标记建筑;束流收集器;低温车间及服务大楼。公用设施包括供水、污水处理、电力、电信、冷冻水、低导水和低温配送系统。
中国科学院大科学装置办公室 资料来自:http://www.jlab.org/
