发表在2020年11月Nature杂志上的三篇论文报道了对一个快速射电暴(FRB)现象的探测,显示其来源位于银河系内。有趣的是,快速射电暴伴随着X射线的爆发。这一发现是通过综合了多台太空望远镜和地面望远镜的观测结果得出的。顾名思义,“快速射电暴”是指一种瞬态的无线电波明亮脉冲,爆发持续时间约为毫秒级。研究者于2007年首次发现了这一现象,由于存在时间很短,使得探测它们并确定其在天空中的位置变得异常困难。这是第一个被探测到具有除无线电波外辐射的快速射电暴,也是该现象在银河系内的首次发现。这三项观测也首次证实了磁星是快速射电暴的来源之一,这是目前唯一被观测验证的可产生快速射电暴的天体。值得一提的是,其中一篇论文来自中国的研究团队,共同第一作者为北京师范大学的林琳、北京大学张春风和国家天文台王培,观测结果则是来自中国“天眼”——500米口径球面射电望远镜(FAST)。上:磁星发射快速射电暴过程示意图(图片来源:Columbia University Department of Physics);下:FAST观测流量限制(图片来源:Lin et al. 2020, Nature, 587, 63)专家点评:李 菂 国家天文台研究员,现任突破基金会聆听计划指导委员,FAST首席科学家。命名了氢气窄线自吸收(HINSA)方法,发现了星际氧气分子,组织发现FAST首个新脉冲星、首个新快速射电暴,为FAST监测河内快速射电暴论文的共同通讯作者。快速射电暴(FRB)是一个出人意料的全新领域。其在2007年被首次发现,2013年被确认并获得公认命名FRB,2017年才完成首例定位和宿主星系的红移测量揭示了其宇宙学起源。2017年的突破被美国天文学会称作“自LIGO引力波测量之后天文学最重大的发现”。快速射电暴的起源至今未知。这一神秘现象持续约千分之一秒的时间,释放太阳辐射一天甚至一年的能量,既可能孕育了新的基础物理或天体物理也有潜力成为探索宇宙的有力工具。自2007年Lorimer等人在重新处理Parkes望远镜对大小麦哲伦云天区脉冲星巡天数据时发现第一个FRB (FRB010724),现今已探测到数百例FRB,有十几例被定位到能够确认其宿主星系。FRB的宇宙学起源得到了天文界公认。少量FRB源被探测到重复暴发。那是否所有的FRB都会重复暴发呢?2020年3月举办的国际FRB专题研讨会上,与会专家就上述问题进行了非正式投票,结果接近一半一半。这体现了人类对于这一现象的知识缺乏。2020年11月4日,Nature杂志发表三篇论文,报道了首例银河系内的快速射电暴。这三项最新观测证实了极强磁场中子星(磁星)是快速射电暴的来源之一,三篇论文分别来自加拿大氢强度测绘实验(CHIME)望远镜、美国STARE-2望远镜以及我国500米口径球面射电望远镜(FAST)。其中前两篇为发现论文,第三篇为后随监测。这一结果使得磁星成为目前唯一被观测验证的可产生FRB类暴发的天体,为揭开与FRB有关的种种谜题奠定了基础,是一个里程碑式的成就。磁星是高度磁化的特殊中子星。2020年4月28日,CHIME和STARE-2望远镜首次在银河系内磁星软伽马射线暴源SGR J1935+2154探测到了明亮的毫秒级射电脉冲暴发FRB 200428,追踪到磁星与FRB之间的联系。我国学者使用FAST从4月下旬开始监测并结合了国际多波段设备,例如费米卫星伽马暴监测器(Fermi-GBM)、光学BOOTES望远镜及我国慧眼卫星硬X线调制望远镜(Insight-HXMT)。在源X、软伽马射线暴发活跃期,特别是 29个软伽马射线暴对应的精确时间节点上未探测到任何射电辐射。FAST的测量结果结合CHIME和STARE-2的探测,覆盖了8个数量级的亮度空间,在毫央斯基流量阈值上给出了这一河内FRB源迄今最严格的射电流量限制,提供了重要物理约束,对研究FRB起源和物理机制,起到重要的推动作用。中外研究团队通过几个不同角度的叙事,共同讲述了一个FRB起源的故事。磁星是人类首次证实可产生FRB的天体,FRB与SGR暴发具有较弱相关性,反映宇宙中致密天体在不同波段爆发必须依赖于极其特殊的物理条件,推动进一步研究磁星FRB的辐射几何和供能机制,为理解FRB物理起源指出了切入点。快速射电暴的发现出人意料的晚。大型望远镜的各种射电巡天已经进行了半个多世纪,而这一个厘米波段宇宙中最亮的瞬变源,甚至用量产的电视天线都有可能探测到。宇宙的魅力在于其无尽的可能性。FAST的历史最强绝对灵敏度使其在射电瞬变源方面具有重大潜力。FAST已经发现至少5个新快速射电暴源,探测到上千次FRB重复暴发,正在为揭示这一宇宙中神秘现象的机制、推进这一天文学全新的领域做出独特的贡献。
8 冷冻电镜达到原子分辨率
结构生物学的一个基本原理是,一旦研究人员能够以足够的分辨率直接观察到大分子,就有可能理解其三维结构与生物功能之间的联系。在2020年10月Nature杂志同期发表的两项研究中,Yip等人和Nakane等人报道了迄今为止使用单粒子冷冻电子显微镜(cryo-EM)的方法获得的最清晰图像,首次确定了蛋白质中单个原子的位置。两个小组使用的硬件都经过改良,突破了以往cryo-EM成像在分辨率上的限制。随着这些技术的发展,cryo-EM图像信噪比的提高将扩展冷冻电镜技术的适用性。也许这些技术的融合将使cryo-EM的结构测定达到甚至超越1埃(0.1纳米)的分辨率——这在过去几乎是不可能实现的成就。冷冻电镜(图片来源:Nature官网)专家点评:王宏伟 清华大学生命科学学院教授,博士生导师,国家蛋白质科学研究(北京)设施清华基地常务副主任,北京市结构生物学高精尖创新中心常务副主任,北京市生物结构前沿研究中心常务副主任。主要研究方向为冷冻电子显微学和生物大分子复合体的结构与分子机理,致力于开发更高效、更高分辨率的冷冻电子显微学技术与方法。承担科技部重点研发计划、国家自然科学基金重点项目等。突破性研究成果发表在Nature、Cell、Science等高水平学术期刊。著名物理学家理查德·费曼在他1959年的著名演讲There's Plenty Room at the Bottom中提出:要让生物学进展的更快,我们应该把电子显微镜改良100倍,以看到更精细的生物结构,从而回答更多生物学的基本问题。那时候的电子显微镜可以达到的最佳分辨率在1纳米,还不足以分辨出微观世界里的单个原子,要应用电子显微镜分辨生物结构中的原子则困难更大。在费曼演讲后的半个多世纪里,结构生物学发展非常迅速。科学家实现了对生物大分子结构的原子分辨率解析,但并不是应用电子显微镜,而主要是应用X射线晶体学与核磁共振波谱学技术。X射线晶体学利用X射线穿过高度有序的生物大分子三维晶体会发生衍射的原理来解析晶体中分子的结构,其关键要求是获得高度有序的三维晶体。核磁共振波谱学通过测量生物大分子中特异的原子核自旋状态对高能磁场响应的变化来解析溶液中分子的结构,需要较高浓度的样品进行较长时间的数据采集,主要适合于解析分子量相对较小的生物大分子。电子显微镜通过对微小物体的直接放大成像进行结构观察,具有诸如样品需求量小、适合分析多种结构状态的优势,但是应用电子显微镜解析生物样品高分辨结构面对几个主要技术困难,包括:生物含水样品如何保持在高真空的电子显微镜中,生物分子的结构在高能电子辐射下如何有效保持,生物结构在电子显微镜成像中的微弱信号如何有效提取等。从20世纪70年代以来,科学家们经过多年持续的努力建立了冷冻电子显微学技术。该技术通过将生物含水样品迅速冷却到液氮温度下把样品包埋在玻璃态的冰中,从而将生物大分子的结构固定在冷冻前一瞬间液体中的状态。这种冷冻在液氮温度下的生物样品一方面可以在电子显微镜内的高真空中得以保持其含水状态,另一方面抗电子辐照损伤的能力得到了提升,因而可以使用电子显微镜对其结构进行观察。电子显微镜自从被发明出来,经过几十年的持续改进,其成像能力得到了很大的提升,在本世纪初就已经突破了1埃的成像分辨率,可以对无机材料结构进行原子水平的分析。这得益于一系列电子显微光学器件与计算机控制软件的革新和改进,比如场发射电子枪、多级聚光镜、稳定的物镜系统、球差矫正装置、能量过滤器等。但是,要使用电子显微镜解析冷冻生物样品的高分辨率结构,还需要解决生物大分子结构信号提取的技术难题。冷冻生物样品在电子显微镜下成像需要使用比无机材料低的多的电子辐照剂量,导致图像的信噪比很低。这一直是阻挡冷冻电子显微学在结构生物学领域发挥作用的主要难题。过去的近20年里,两方面的技术革新大大地推进了冷冻电子显微镜的结构解析分辨率,如今成为了结构生物学最有力的研究手段。一个是直接电子探测装置的发明。直接电子探测装置实现了对显微镜中的电子直接响应从而记录数字化的电子显微像,提高了图像信号的高效率传递。这种装置还可以实现对同一样品区域高速多帧的图像采集,从而通过数字图像处理消除样品漂移产生的信号损失,提升图像的质量。多帧图像的采集可以对样品电子辐照强度的情况进行分析,在生物冷冻样品的电子显微镜观察中尤其重要。另一个技术革新是新型冷冻电镜图像处理软件算法的发明。几十年来发展起来的基于统计的图像处理算法对于提高冷冻电子显微镜生物大分子图像的信噪比具有重要的作用,逐渐发展成为单颗粒冷冻电镜方法。本世纪初,概率统计的概念被引入到单颗粒冷冻电镜领域里来,很快被发现很适合于解决冷冻电子显微图像的低信噪比问题,从而迅速在冷冻电子显微图像处理的很多方面得以应用。以上两项技术革新恰逢其时,相辅相成,将冷冻电子显微镜的分辨率解析能力在短短的2~3年里即从8~10埃推至3~4埃,实现了冷冻电子显微学的“分辨率革命”。自从2013年高分辨率的TRPV1结构被发表以来,单颗粒冷冻电镜方法解析出的近原子分辨率结构数目呈指数上升,分辨率也逐年提高。更为重要的是,很多以前应用X射线晶体学和核磁共振波谱学无法解析的复杂生物大分子复合物在冷冻电子显微镜下都很快被解析出高分辨率结构了。若干极其重要的生物学过程的本质机理在冷冻电子显微镜下被揭开了它们的神秘面纱。冷冻电子显微学距离直接观察到生物大分子中的原子只有一步之遥了。2020年的两个工作打开了通向原子分辨率冷冻电镜时代的大门。与前面的多次突破类似,这一次仍然得益于电子显微镜技术的革新。两个工作分别证明了性能更好的电子枪、球差矫正装置、能量过滤成像系统、图像处理软件算法可以有效地提升冷冻电子显微镜对生物大分子结构的解析分辨率。在1.2埃的分辨率下,单颗粒冷冻电镜方法不但清晰地解析出了蛋白质分子中每一个氨基酸中碳原子、氧原子、氮原子的空间位置,而且定位了氢原子的空间坐标。虽然应用晶体衍射技术,人类已经可以在亚埃的分辨率下观察到氢原子,但这是首次应用单颗粒冷冻电镜观察到非晶体状态中生物分子的氢原子,具有更重要的生物化学意义。过去,科学家们基于晶体学的经验,一直以为单颗粒冷冻电镜的分辨率需要突破1埃的分辨率才可能实现观察到氢原子的目标,但实验证明,冷冻电镜技术在1.2埃的分辨率下即可。费曼60多年前的梦想今天可以说基本实现了。应用原子分辨率冷冻电子显微学,我们可以对最接近于生物环境的分子结构进行精细的揭示和分析,并与它们的功能紧密结合起来,理解这些生物大分子的结构变化及其调控机理。在此基础上,我们将可以更广泛地开展结构生物学研究,更深入地揭示生命现象的规律,更有效地开发新型药物分子。